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Abstract. The nonlinear evolution equations for three-wave resonances including intrapulse
dispersion are solved by a special ansatz. Several types of three-wave solitary waves and kink
solutions are provided explicitly.

Wave interactions and related solitary waves and solitons are fascinating phenomena widely
occuring in fluids and solids, plasmas and nonlinear optics [1–3]. Resonant interaction is
particularly interesting since it leads to an efficient energy exchange between waves with
different frequencies. In a medium without a centre of symmetry, quadratic nonlinearity
results in parametric three-wave mixing when two fundamental waves with the frequencies ω1

andω2 create a harmonic wave with a combined frequencyω3 = ω1 +ω2. Dynamical equations
describing such a mixing process are the well known three-wave interaction (TWI) equations
without including intrapulse dispersion [4]. These equations are completely integrable and
can be solved by the inverse scattering transform in a systematic way [5]. However, the
TWI equations are not valid for fairly short pulses because in this case the effect due to the
intrapulse dispersion plays a significant role. To include the intrapulse dispersion, the second-
order derivatives with respect to time should be introduced into the usual TWI equations. In
recent years there has been considerable interest shown in such processes but most of the studies
concentrated only on the degenerate case ω1 = ω2, i.e. a second-harmonic generation [6].

In this paper, we consider the solitary wave solutions of the TWI equations with dispersion
taken into account. We obtain some new solitary wave solutions and thus extend the work of
Werner and Drummond [7].

We start with the TWI equations with dispersion in nonlinear optics [8]:
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describing the interaction in a dispersive medium of three pulses with the following parameters:
associated electric fields Ej(t, z) = Fj (t, z) exp[i(ωj t − kj z)] + c.c. (j = 1, 2, 3); centre
frequencies ωj ; group velocities vj ; second-order dispersion coefficients, i.e. group-velocity
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dispersion, gj ; wavenumbers kj = njωj/c, where c is the speed of light and nj is the refractive
index; nonlinear coupling constants σ = 2πχnlω

2
1/(k1c

2), where χnl is the nonlinear dielectric
susceptibility; and wavevector mismatch 	k = k3 − k1 − k2. The usual TWI equations,
i.e. when taking g1, g2 and g3 to be zero in equations (1)–(3), are completely integrable. At
variance with [8] when solving equations (1)–(3) we take the dispersion coefficients gj to be
nonzero.

Applying the transformation s = T −1
0 (t − z/v1), ξ = z/LD , Fj = Fj0aj (s, ξ) with

F10 = ω1/(σLD

√
ω2ω3), F20 = √

ω1/ω3/(σLD) and F30 = √
ω1/ω2/(σLD), where T0

denotes the pulsewidth and LD the dispersion length (=T 2
0 /|g1|), leads to the dimensionless

form of the equations (1)–(3):

i
∂a1

∂ξ
− α1

2

∂2a1

∂s2
+ a∗

2a3e−iβξ = 0 (4)

i

(
∂a2

∂ξ
− γ2

∂a2

∂s

)
− α2

2

∂2a2

∂s2
+ a3a

∗
1 e−iβξ = 0 (5)

i

(
∂a3

∂ξ
− γ3

∂a3

∂s

)
− α3

2

∂2a3

∂s2
+ a1a2eiβξ = 0 (6)

where α1 = sgn(g1)/2, α2 = g2/|g1|, α3 = g3/|g1|, β = −(	k)LD , γ2 = −(LD/T0)(1/v2 −
1/v1) and γ3 = −(LD/T0)(1/v3 − 1/v1). γj (j = 2, 3) are also called the temporal walk-
off parameters. In order to obtain the vector solitary wave solutions of equations (4)–(6) we
assume aj = Uj(θ) exp(iθj ) with θ = !s − Kξ , θj = Kjξ − !js (j = 1, 2, 3). Then
equations (4)–(6) are transformed into the following ordinary differential equations:
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with the conditions

K3 = K1 + K2 + β (10)

!3 = !1 + !2. (11)

To solve equations (7)–(9) we use the ansatz [9]

Uj = Aj + Bj sechθ tanh θ + Cj sech2θ (12)

for j = 1, 2, 3, where Aj , Bj and Cj are generally complex constants yet to be determined.
Substituting (12) into the equations (7)–(9) and equating the coefficients of the hyperbolic
functions, we obtain

K/! = α1!1 = α2!2 − γ2 = α3!3 − γ3 (13)

as well as the nonlinear algebraic equations determing Aj , Bj and Cj , which are listed in the
appendix.

Equations (11) and (13) yield

!1 = −α2γ3 + α3γ2

α1α2 − α2α3 − α3α1
(14)
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(15)
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α1α2 − α2α3 − α3α1
. (16)
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We assume Bj = ibj with Aj , bj and Cj (j = 1, 2, 3) real constants left to be determined.
Then solving the equations for Aj , bj and Cj we obtain the following types of solitary wave
solution.

(i) Aj = bj = 0 (j = 1, 2, 3), sgn(α1) = sgn(α2) = sgn(α3).
In this case all three wave components are in the normal or in the anomalous regime. We
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√
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√
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√
α1α2sgn(α3)!
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have the solution for equations (4)–(6):
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√
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The parameters !j (j = 1, 2, 3) are given by (14)–(16). Since all solutions of the form (12)
must satisfy the conditions (10), (11) and (14)–(16), we do not repeat them below. From (17)–
(19) we see that all three wave components are simultaneously one-hump bright solitary waves
with the same central position and the same travelling velocity. The physical reason for the
formation of such three-wave solitary waves is due to the mutual self-trapping through a
cascading process. Note that we have in fact a family of solitary wave solutions since the
amplitude of each wave component may have different signs. As a particular case, when
γj = 0 (j = 1, 2, 3) one has !j = K = 0, the solution (17)–(19) recovers that found by
Werner and Drummond [7].

(ii) bj = 0 (j = 1, 2, 3), sgn(α1) = sgn(α2) = sgn(α3).
This case gives rise to C1 = −3A1/2 = 3s1

√
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The solution (24)–(26) belongs to dark three-wave solitary waves. However, it is quite different
from conventional dark solitons found in the nonlinear Schrödinger equation in the normal
dispersion regime since in the present case the intensity of each wave component has two
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holes. In addition, the phase difference here is absent between the background waves from the
right to the left.

(iii) Aj = 0 (j = 1, 2, 3), b3 = C1 = C2 = 0, α1α2 > 0, α2α3 < 0.
In this case we obtain b1 = 3s1

√−α2α3!
2, b2 = 3s2

√−α3α1!
2 and C3 =
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α1α2sgn(α3)!
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From (31)–(33) we see that the harmonic wave (denoted by a3) is a one-hump bright soliatry
wave but two fundamental waves (denoted by a1 and a2) are (also bright) two-hump waves.

(iv) Aj = 0 (j = 1, 2, 3), b2 = C1 = C3 = 0, α1α2 < 0, α2α3 < 0.
We find in this case b1 = 3s1
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√
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√
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. (44)

Different from the case (iii), here one of the fundamental waves (a2) is a one-hump solitary
wave, but another fundamental wave (a1) and the harmonic wave (a3) are two-hump waves.

(v) Aj = 0 (j = 1, 2, 3), b1 = C2 = C3 = 0, α1α2 < 0, α2α3 > 0.
In this case we obtain b2 = 3s2

√−α3α1!
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where

K = α1!!1 (48)
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K1 = α1

2
!2

1 + α1!
2 (49)

K2 = α2

2
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Note that the validity of the three-wave solitary wave solutions given above needs all αj

(j = 1, 2, 3) to be nonzero. If one of α1, α2 and α3 vanishes, the solution ansatz (12) should
be generalized to

Uj = Aj + Bj tanh θ + Cj sechθ + Dj sechθ tanh θ + Ej sech2θ (52)

for j = 1, 2, 3.
In summary, we have solved the three-wave interaction equations with dispersion. A set

of explicit three-wave solitary wave solutions has been presented. The system treated above
describes a parametric process including group-velocity dispersion, and hence is valid for fairly
short pulses. We can also consider in a similar way the case of a wavefield propagating along
a planar waveguide with diffraction taken into account. The envelope equations are similar
to the equations (1)–(3) but with the second-order derivatives in time to be replaced by the
second-order derivatives in space. Therefore, we can also obtain spatial three-wave solitary
waves with the form given above.

The formation mechanism of these one- and two-hump bright and dark three-wave solitary
waves is due to the cascading effect between the three wave components. In this process, the
fundamental and the harmonic waves interact with themselves through repeated wave–wave
interactions. For instance the energy of one fundamental wave is first up-converted to another
fundamental wave and the harmonic wave and then down-converted again, resulting in a mutual
self-trapping of each wave and thus the formation of three simultaneous solitary waves. Our
results may have a possible application for the design of all-optical devices [8].
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Appendix

The equations determining Aj , Bj and Cj (j = 1, 2, 3) are given by
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−α2

2
!2B2 + A∗

1B3 + B∗
1A3 +

(
−K2 +

α2

2
!2

2 − γ2!2

)
B2 = 0 (61)

A∗
1A3 +

(
−K2 +

α2

2
!2

2 − γ2!2

)
A2 = 0 (62)

3α3!
2C3 − B1B2 + C1C2 = 0 (63)

3α3!
2B3 + B1C2 + C1B2 = 0 (64)

−2α3!
2C3 + A1C2 + B1B2 + C1A2 +

(
−K3 +

α3

2
!2

3 − γ3!3

)
C3 = 0 (65)

−α3

2
!2B3 + A1B2 + B1A2 +

(
−K3 +

α3

2
!2

3 − γ3!3

)
B3 = 0 (66)

A1A2 +
(
−K3 +

α3

2
!2

3 − γ3!3

)
A3 = 0. (67)

References

[1] Sagdeev R Z, Usikov D A and Zaslavsky G M 1988 Nonlinear Physics (Chur: Harwood)
[2] Davidson R C 1972 Methods in Nonlinear Plasma Theory (New York: Academic)
[3] Craik A D D 1985 Wave Interactions and Flow Flows (Cambridge: Cambridge University Press)
[4] Kaup D J 1976 Stud. Appl. Math. 55 9
[5] Kaup D J, Reiman A and Bers A 1979 Rev. Mod. Phys. 51 275
[6] Kivshar Y S 1999 Advanced Photonics with Second-order Optically Nonlinear Processes ed A D Boardman,

L Pavlov and S Tanev (Dordrecht: Kluwer) pp 451–75
[7] Werner M J and Drummond P D 1993 J. Opt. Soc. Am. B 10 2390
[8] Ibragimov E 1998 J. Opt. Soc. Am. B 15 97
[9] Menyuk C R, Schiek R and Torner L 1994 J. Opt. Soc. Am. B 11 2434


